

Isopsylloborine A, a New Dimeric Azaphenalene Alkaloid from Ladybird Beetles (Coleoptera: Coccinellidae)

Benjamine Lebrun^a, Jean-Claude Braekman*^a, Désiré Daloze*^a,
Plamen Kalushkov^b, and Jacques M. Pasteels^c

Laboratory of Bio-organic Chemistry CP 160/07, Department of Organic Chemistry, University of Brussels, Av. F. D. Roosevelt, 50
 1050 Brussels, Belgium; ^b Institute of Zoology, Bulgarian Academy of Sciences, Sofia, Bulgaria; ^c Laboratory of Animal and Cellular Biology CP 160/12, University of Brussels, Av. F. D. Roosevelt, 50 1050 Brussels, Belgium.

Received 10 September 1999; accepted 12 September 1999

Abstract

A new dimeric azaphenalene alkaloid, isopsylloborine A (2), has been isolated from the ladybird beetles *Halyzia 16-guttata* and *Vibidia 12-guttata*, and its structure determined by 2D NMR methods. It is a double bond isomer of the recently described psylloborine A (1), which is also present in these beetles as a minor alkaloid. © 1999 Published by Elsevier Science Ltd. All rights reserved.

Keywords: Insects; NMR; alkaloids.

Ladybird beetles are protected against predators and competitors by bitter alkaloids which are present in their hemolymph [1,2]. Amongst the great variety of structural types exhibited by these alkaloids, the 2-methylperhydro-9b-azaphenalene skeleton is surely the most characteristic [1,2]. Recently, Schröder and Tolasch have described the first true azaphenalene dimer, psylloborine A (1), isolated from *Psyllobora 22-punctata* (L.) [3].

We report here on the isolation and structure determination of a related azaphenalene dimer, isopsylloborine A (2), isolated together with 1 from two species of European ladybird beetles, *Halyzia 16-guttata* and *Vibidia 12- guttata*. The MeOH extract of adults of the two species were identical in TLC and HPLC. Accordingly, the extract of 954 beetles (1.755 g) was submitted to a series of chromatographies on silica gel, using mixtures of CH₂Cl₂-MeOH-NH₄OH, from 100:0:0.5 to 97:3:0.5 as eluent. This procedure yielded 22 mg of the major alkaloid (2) and 4.5 mg of the minor one, which was identified as psylloborine A (1) [3] by NMR, MS, and direct TLC and HPLC comparison with an authentic sample isolated from *Psyllobora 22-punctata*.

Compound 2 [oil; $[\alpha]_{579}$ +17 (c= 0.53, CH₂Cl₂); C₂₆H₄₀N₂ by HR-EIMS: m/z 380.3190 Daltons; calc. 380.3191)] was isomeric with 1, and displayed the same base peak at m/z 188.1436 (calc. for C₁₃H₁₈N: 188.1439). The ¹H and ¹³C NMR spectra of 2 measured in CD₂Cl₂ showed only broadened peaks precluding a

detailed analysis. This problem was solved by running the NMR spectra in the presence of 0.2 µl of TFA. Under these conditions, the ¹H NMR and ¹³C NMR spectra (Table 1) showed well-resolved signals. The structure of 2 was solved by a detailed analysis of 1D and 2D NMR spectra (¹H, ¹³C, COSY, HMQC, HMBC and NOESY). The assignment of all the H and C atoms of the molecule is reported in Table 1. Compound 2 is thus a double bond isomer of psylloborine A (1), named isopsylloborine A, which is also present as a minor derivative in *P. 22-punctata*.

Position	$\delta_{\mathbf{C}}$	δΗ	HMBC (H to C) ^a	NOESY
1ax	39.8	1.80, m	C-2, 2-Me, C-9a	
leq		2.04, m	C-3, C-9a	H-2ax, 2-Me, H-9a,
2ax	35.0	1.77, m	C-1, C-9a	H-9a, H-1eq, H-4'eq, H-5'eq
3ax	49.7	2.17, m ^b	C-2, 2-Me, C-3a, C-4, C-4', C-6'	2-Me, H-6'a, H-5'eq, H-6'eq
3a	145.1	-	<u>-</u>	-
4	127.3	-	-	-
5ax	22.3	2.67, bm	C-3a, C-4, C-6	H,-6, H-6a
5eq		2.46, bdd, 17.5, 5.6	C-3a, C-4, C-6, C-6a	H-6a, H ₂ -3'
6ax	20.4	2.10, m	C-6a	H-9a
6eq		1.83, m	0 04	** > "
6a	56.0	3.80,bd, 12.0	C-5, C-6, C-7, C-8, C-9a	H,-5, H,-7, H-6'a
7ax	28.2	1.83, m°	0 3, 0 6, 0 7, 0 6, 0 74	H-6a
	20.2		0.6.00	
7eq	17.0	2.12, m	C-6a, C-8	H-6a
8ax	17.0	1.60, m	C-6a	
8eq 9ax	31.4	1.70, m		
9eq	31.4	1.70, m 1.87, m		H-9a
9a	63.6	3.34, tt, 12.0, 3.0		H-1eq, H-2ax, H-6ax, H-9e
2-Me	19.6	1.03, d, 6.6	C-1, C-2, C-3, C-9a	H-1eq, H-2ax, H-3ax, H-5'e
l'ax	39.0	1.49, m	C-2', 2'-Me, C-3', C-9'a	2'-Me
l'eq	37.0	1.80, m	C-2, 2-1/1c, C-3, C-3 u	2'-Me
2'ax	24.9	1.98, m		2'-Me, H-4'ax, H-9'a,
3'ax	41.8	2.04, m	C-4, C-2', C-3'a, C-4'	H-5eq
3'eq		1.60, m	* *	2'-Me, H-5eq
3'a	63.5	-	-	
4'ax	25.6	2.44, dd, 15.0, 3.5	C-3, C-4, C-3'a, C-5'	H-2'ax, H-6'ax, H-9'a
4'eq		1.55, m		H-2ax, H-5'eq
5'eq	26.5	2.40, bs	C-6'	H-2ax, H-3ax, H-4'eq, H-6'e
6'ax	30.0	2.28, td, 14.5, 4.5	C-3, C-5', C-6'a, C-7'	H-4'ax, H-7'ax, H-9'a
6'eq		1.48, bd, 14.5		H-3ax, H-5'eq, H-6'a, H-7'ed
6'a	52.6	4.17, dq, 13.5, 3.0	C-7', C-8', C-9'a	H-3ax, H-6a, H-6'eq, H ₂ -7'
7'ax	28.7	2.00, m	C-6', C-6'a, C-8'	H-6'a, H-6'ax
7'eq		1.70, m		H-6'eq, H-6'a
8'ax	17.7	1.60, m		H-9'a
8'eq		1.60, m		
9'ax	31.8	1.70, m ^d		
9'eq		1.78, m ^d		
9'a	56.1	3.57, bm		H-2'ax, H-4'ax, H-6'ax, H-8'
2'-Me	21.6	0.99, d, 6.6	C-1', C-2', C-3', C-3'a, C-9'a	H ₂ -1', H-2'ax, H-3'eq

Acknowledgements: This work was supported by grants from the Belgian Fund for Basic Research (Grant 2.4513.90-96) and the French Community of Belgium (ARC 93/98-137). One of us (B.L.) thanks the FRIA for financial support. We thank Dr M. Luhmer for the NMR spectra and Mr C. Moulard for the HR-EIMS.

References and notes

- 1. Daloze, D.; Braekman, J. C.; Pasteels J. M. Chemoecology 1995, 5/6: 173-183.
- 2. King A. G.; Meinwald, J. Chem. Rev. 1996, 96: 1105-1122.
- 3. Schröder, F. C.; Tolasch, T. Tetrahedron, 1998, 54: 12243-12248.